Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Built-In Drift Fields on the Performance of InP-Based HBTs Grown by Solid-Source MBE

Identifieur interne : 001977 ( Main/Repository ); précédent : 001976; suivant : 001978

Influence of Built-In Drift Fields on the Performance of InP-Based HBTs Grown by Solid-Source MBE

Auteurs : RBID : Pascal:12-0267519

Descripteurs français

English descriptors

Abstract

The versatility of solid-source molecular beam epitaxy for the growth of InP/InGaAs heterojunction bipolar transistors (HBTs) is provided by its excellent control of doping and composition grading profiles in combination with its efficiency for carbon doping. Various designs using doping grading or composition grading in the base are investigated to provide a built-in quasi-electric field that enhances electron transport. All graded-base devices exhibit higher current gains (β), as compared to uniform-base structures, but the β improvements are found to be nonproportional to the generated built-in drift fields. The best performances are obtained with a 9% linear composition grading profile. As compared to conventionally grown uniform-base structures, the linearly graded-base HBTs show higher current gains (up to 42%), which is of particular importance particularly in analog and mixed-signal applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0267519

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of Built-In Drift Fields on the Performance of InP-Based HBTs Grown by Solid-Source MBE</title>
<author>
<name sortKey="Driad, Rachid" uniqKey="Driad R">Rachid Driad</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Applied Solid State Physics</s1>
<s2>79108 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aidam, Rolf" uniqKey="Aidam R">Rolf Aidam</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Applied Solid State Physics</s1>
<s2>79108 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>QUANKUI YANG</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Fraunhofer Institute for Applied Solid State Physics</s1>
<s2>79108 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0267519</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0267519 INIST</idno>
<idno type="RBID">Pascal:12-0267519</idno>
<idno type="wicri:Area/Main/Corpus">001C01</idno>
<idno type="wicri:Area/Main/Repository">001977</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9383</idno>
<title level="j" type="abbreviated">IEEE trans. electron devices</title>
<title level="j" type="main">I.E.E.E. transactions on electron devices</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analog signal</term>
<term>Binary compound</term>
<term>Carbon</term>
<term>Current gain</term>
<term>Doping</term>
<term>Electric field</term>
<term>Heterojunction bipolar transistors</term>
<term>Indium phosphide</term>
<term>Microelectronic fabrication</term>
<term>Mixed signal circuit</term>
<term>Molecular beam epitaxy</term>
<term>Performance evaluation</term>
<term>Solid source molecular beam epitaxy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaluation performance</term>
<term>Transistor bipolaire hétérojonction</term>
<term>Epitaxie jet moléculaire</term>
<term>Méthode SSMBE</term>
<term>Dopage</term>
<term>Champ électrique</term>
<term>Gain courant</term>
<term>Signal analogique</term>
<term>Circuit à signal mixte</term>
<term>Phosphure d'indium</term>
<term>Composé binaire</term>
<term>Carbone</term>
<term>Fabrication microélectronique</term>
<term>8115H</term>
<term>InP</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The versatility of solid-source molecular beam epitaxy for the growth of InP/InGaAs heterojunction bipolar transistors (HBTs) is provided by its excellent control of doping and composition grading profiles in combination with its efficiency for carbon doping. Various designs using doping grading or composition grading in the base are investigated to provide a built-in quasi-electric field that enhances electron transport. All graded-base devices exhibit higher current gains (β), as compared to uniform-base structures, but the β improvements are found to be nonproportional to the generated built-in drift fields. The best performances are obtained with a 9% linear composition grading profile. As compared to conventionally grown uniform-base structures, the linearly graded-base HBTs show higher current gains (up to 42%), which is of particular importance particularly in analog and mixed-signal applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9383</s0>
</fA01>
<fA02 i1="01">
<s0>IETDAI</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. electron devices</s0>
</fA03>
<fA05>
<s2>59</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of Built-In Drift Fields on the Performance of InP-Based HBTs Grown by Solid-Source MBE</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DRIAD (Rachid)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AIDAM (Rolf)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>QUANKUI YANG</s1>
</fA11>
<fA14 i1="01">
<s1>Fraunhofer Institute for Applied Solid State Physics</s1>
<s2>79108 Freiburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1915-1920</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F3</s2>
<s5>354000508304890140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0267519</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>I.E.E.E. transactions on electron devices</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The versatility of solid-source molecular beam epitaxy for the growth of InP/InGaAs heterojunction bipolar transistors (HBTs) is provided by its excellent control of doping and composition grading profiles in combination with its efficiency for carbon doping. Various designs using doping grading or composition grading in the base are investigated to provide a built-in quasi-electric field that enhances electron transport. All graded-base devices exhibit higher current gains (β), as compared to uniform-base structures, but the β improvements are found to be nonproportional to the generated built-in drift fields. The best performances are obtained with a 9% linear composition grading profile. As compared to conventionally grown uniform-base structures, the linearly graded-base HBTs show higher current gains (up to 42%), which is of particular importance particularly in analog and mixed-signal applications.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transistor bipolaire hétérojonction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Heterojunction bipolar transistors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode SSMBE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solid source molecular beam epitaxy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método SSMBE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Champ électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electric field</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Campo eléctrico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Gain courant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Current gain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ganancia corriente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Signal analogique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Analog signal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Señal analógica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Circuit à signal mixte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Mixed signal circuit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Circuito de señal mixto</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Carbono</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>10</s5>
</fC07>
<fN21>
<s1>198</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001977 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001977 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0267519
   |texte=   Influence of Built-In Drift Fields on the Performance of InP-Based HBTs Grown by Solid-Source MBE
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024